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1 Extending Dung Argumentation to Coalitions

An Argumentation Framework (AF) is a pair 〈Args, R〉 of a set Args

of arguments and a binary relation R on Args called the attack rela-
tion [1]. The justified arguments under different extensional semantics
(e.g. conflict-free ones) are then evaluated, and the claims of these argu-
ments define the inferences of the underlying theory.

Our aim is to partition a set of arguments into coalitions of argu-
ments [2–4], merging the two worlds of coalition formation and argu-
mentation. A classical scenario could be represented by the need to ag-
gregate a set of distinct arguments into different lines of thought. The
basic idea is to start from a single set of arguments and partition them to
several agents, with the condition that each subset (i.e. coalition) has to
show the same properties defined by Dung, e.g. admissibility or stabil-
ity [1]. In order to model and solve the proposed extended problems we
use Constraint Programming [5]: the solution of the obtained Constraint
Satisfaction Problem [5] (CSP) represents a partition of the arguments.

According to our extension, the classical Dung AF is a particular
case of our extended framework and it corresponds to a partition with
a (unique) maximal subset (the extension as described in Sec. 1) plus dif-
ferent singletons (the arguments which are not included in the extension).
An example representing the original framework and our extension is il-
lustrated in Fig. 1, in which case (A) represent the unique subset obtained
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Fig. 1: Differences between classical Dung AF (A) and the extended partitioned framework (B)
presented in this paper.

in the classical framework and case (B) shows the results obtained with
our extension. Fig. 1 (A) represents a conflict-free extension as described
in [1], while Fig 1 (B) represents a conflict-free partition of coalition,
since each coalition is conflict-free (see Def. 1).

In the following, we extend the definitions given in [1] in order to
consider coalitions instead of singletons.

Definition 1. A partition of coalitions G = {B1,B2, . . . ,Bn} is conflict
free iff for each Bi ∈ G, Bi is conflict free, i.e. no attacks inside the same
coalition.
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Fig. 2: A stable (A), admissible and complete (B) and an admissible but not complete (C) partition
of coalitions.

Notice that singletons are always conflict-free; for example, coalition
C1 in Fig.2 (A) is conflict-free. Now we revise the concept of attacks
among coalitions and the notion of stable partition of coalitions:

Definition 2. A coalition Bi attacks another coalition Bj if any of its
elements attacks at least one element in Bj , i.e. ∃a ∈ Bi, b ∈ Bj s.t.
aR b. A conflict free partition G = {B1,B2, . . . ,Bn} is stable iff for each
coalition Bi ∈ G, all its elements ak ∈ Bi are attacked by all the other
coalitions Bi s.t. i 6= j, i.e. ∀ai ∈ Bk,∃bz ∈ Bj.bz R ai. (∀k 6= j).



Fig. 2 (A) represents a stable partition: each argument in B1 attacks
at least one argument in B2 and one argument in B3 (and the same is true
for B2 and B3). To have a stable partition means that each of the argu-
ments cannot be moved from one coalition to another without inducing a
conflict in the new coalition.

In the next two definitions we separately extend the concept of ad-
missible and complete extensions respectively. Fig. 2 (B) represents an
admissible and complete partition of coalitions, while Fig. 2 (C) repre-
sents a not stable partition.

Definition 3. A conflict free partition G = {B1,B2, . . . ,Bn} of coali-
tions is admissible iff for each argument a ∈ Bi attacked by b ∈ Ba, then
∃c ∈ Bi attacks a ∈ Ba (i.e. cR a), that is each Bi defends itself on each
of its attacked arguments.

In a complete partition, each rational agent is able to defend its line
of thought because it counter-attacks all its attacking lines.

Definition 4. An admissible partition G = {B1,B2, . . . ,Bn} is a com-
plete partition of coalitions iff each argument a which is defended by Bi

is in Bi (i.e. a ∈ Bi).

Fig. 2 (B) is an admissible partition because is conflict-free and both
B1 and B2 defend themselves: x3 attacks x4 but x4 attacks x1. Fig. 2
(C) represents an admissible partition but it is not stable because x6 is
defended also by coalitions B1 (via x1) and B2 (via x4) but belongs to B3.

2 Mapping Partition Problems to CSPs

A CSP P is a triple P = 〈X,D,C〉 where X is an n-tuple of variables
X = 〈x1, x2, . . . , xn〉, D is a corresponding n-tuple of domains D =
〈D1, D2, . . . , Dn〉 such that xi ∈ Di, C is a t-tuple of constraints C =
〈C1, C2, . . . , Ct〉, where a constraint is a relation on the X variables [5].

In this section we show a mapping from the AF extended to coali-
tions (see Sec. 1) to CSPs, i.e. M : AF → CSP . M is described as
follows: we define a variable for each argument ai ∈ Args, i.e. V =
{a1, a2, . . . , an} and each of these argument can be taken or not, i.e. the
domain of each variable is D = {1, n}. The value of a variable repre-
sents the coalition to which argument ai belongs; for example if a1 = 2
it means that the first argument belongs to the second coalition. We can



have a maximum of n coalitions, that is all singletons. Notice that b at-
tacks a meas that b is a father of a in the interaction graph, and c attacks
b attacks a means that c is a grandfather of a.

Conflict-free constraints: since we want to find the conflict-free
sets, if ai R aj) is in the graph we need to prevent the same coalition to
include both arguments ai and aj: cai,aj

(ai = k, aj = k) is not allowed.
The other possible assignment of the variables,i .e. if ai 6= aj are permit-
ted: in these cases we are choosing only one argument between the two
(or none of the two) and thus, we have no conflict inside the same coali-
tion. Admissible constraints: for the admissibility of a partition, if ai has
several grandfathers ag1, ag2, . . . , agk and only one father af , we need to
add a k + 1-ary constraint cai=h,ag1,...,agk

(ai = h, ag1 = j1, . . . , agk = jk)
is not allowed if ∀ji.ji 6= h. The explanation is that at least a grandfather
must be taken in the the same coalition, in order to defend ai from one of
his fathers af . Notice that, if a node is not attacked (i.e. he has no fathers),
he can be taken or not in the admissible set. Complete constraints: if we
have a son node ai with multiple grandsons as1, as2, . . . , ask, we need to
add that the constraint cai,as1,...,ask

(ai = j, af1 = j, . . . , ask = j) is al-
lowed, and the other assignment for ai, as1, as2, . . . , ask are prohibited. In
words, if a node is not taken in a coalition (i.e. ai = j), all of its grand-
sons must be included in the same coalition. Stable constraints: this
kind of constraints can be represented with a global constraint such that
for each couple of arguments ai, aj in the problem belonging to two dif-
ferent coalitions, respectively k and z, at least one of the attacks to aj has
to come from a node in coalition k: if b1, b2, . . . bn are all the arguments
that attacks aj , cai=k,aj 6=k,b1,b2,...,bn((b1 = k)∨ (b2 = k)∨ · · · ∨ (bn = k)).
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